288/BCA 22-23/23311

BCA Semester-II (Hons) Examination, 2022-23 BACHELOR OF COMPUTER APPLICATION

Course ID: 23311 Course Code: CC-03

Course Title: Digital Logic

Time: 2 Hours Full Marks: 50

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

- 1. Choose the best alternative from the following options for each question: $1 \times 10=10$
 - i) A Boolean function x'+y'+xy+x'y is equivalent to
 - a) x'+y'
 - b) x+y
 - c) x+y'
 - d) x'+y
 - e) None of the above
 - ii) In an SR latch made by cross coupling two NAND gates, if both S and R inputs are set to 0 then it will result in

- a) Q=0, Q'=1
- b) Q=1, Q'=0
- c) Q=l, Q'=l
- d) Indeterminate states
- e) None of the above
- iii) The hexadecimal representation of 657₈ is:
 - a) 1AF
 - b) D78
 - c) D71
 - d) 32F
 - e) None of the above.
- iv) Consider the following circuit, which one of the following is TRUE?

- a) f is independent of x
- b) f is independent of y
- c) f is independent of z
- d) the value of f is 1
- e) None of the above.

- v) What value is to be considered for don't care condition?
 - a) 0
 - b) 1
 - c) Either 0 or 1
 - d) Any number except 0 and 1
 - e) None of the above
- vi) Suppose only one multiplexer and one inverter are allowed to be used to implement any Boolean function of n variables. What is the minimum size of the multiplexer needed?
 - a) 2ⁿ lines to 1 line
 - b) 2^{n+1} lines to 1 line
 - c) 2^{n-1} lines to 1 line
 - d) 2^{n-2} lines to 1 line
 - e) None of the above.
- vii) Race around condition is avoided in
 - a) JK Flip flop
 - b) Master Slave Flip flop
 - c) SR Flip flop
 - d) SR latch
 - e) None of the above.

- viii) The size of PLA is specified by number of
 - a) Inputs
 - b) Product terms
 - c) Outputs
 - d) All of the above
 - e) None of the above.
- ix) Consider the following function:

$$F_1 = \Sigma(1,2,4,8,10,14)$$

$$F_{2} = \Sigma (2,5,9,11)$$

$$F_3 = \Sigma(2,4,5,6,7)$$

The minimum configuration of the decoder should be

- a) 2×4
- b) 3×8
- c) 4×16
- d) 5×32
- e) None of the above.
- x) The operation which is commutative but not associative is:
 - a) AND
 - b) OR
 - c) EX-OR
 - d) NAND
 - e) None of the above.

GROUP-B

2. Answer any **five** questions:

 $2 \times 5 = 10$

- i) Explain Minterm and Maxterm.
- ii) Differentiate positive and negative logic system.
- iii) Express any one the following decimal numbers in 2421 and 5421 codes:
 - a) 6734
 - b) 3421
- iv) What is non Weighted code? How it differ from weighted code?
- v) What is the function of a multiplexer's select inputs?
- vi) What is shift register? Name the different types of shift registers.
- vii) What is meant by edge triggering?
- viii) Explain the difference between the performance of asynchronous and synchronous counters.

GROUP-C

3. Answer any **four** questions:

 $5 \times 4 = 20$

[Turn Over]

i) A circuit outputs a digit in the form of 4 bits.0 represented by 0000, 1 by 0001 ...9 by 1001. A combinational circuit is to be designed which takes these 4 bits as inputs and outputs 1 if the

(5)

digit ≥ 5 , and 0 otherwise. If only basic gates are used then what is the minimum number of gates required. Draw the circuit diagram and truth table.

- ii) Prove that:
 - a) BCD+AC'D'+ABD=BCD+AC'D'+ABC'
 - b) A'B'C'+A'B'C+A'BC'+A'BC+ AB'C'=A'+(B+C)'
- iii) Consider the following circuit below. Write down the output of the circuit:

- iv) Design a full adder circuit using two half adder.
 Write down the truth table of full adder.
- v) Explain how a J-K flip flop can be converted into a D flipflop.
- vi) Draw the logic diagram of three bit synchronous binary up-counter.

GROUP-D

- 4. Answer any **one** from the followings: $10 \times l=10$
 - i) a) Simplify the Boolean function using Quine McClusky method :

$$F(W, X, Y, Z) = \sum_{m} (1,3,4,5,9,10,11) + \sum_{d} (6,8)$$

b) Implement the function using decoder:

$$F(A, B, C) = \sum_{m} (1, 3, 5, 6)$$
 6+4

- ii) a) Write truth table, circuit diagram and excitation table of T-flip flop.
 - b) Write a short note on parallel-in-parallelout shift register. 6+4
